JMU Assessment Progress Template

Interdisciplinary Liberal Studies (IdLS) - BS

PART I. Objectives

Description of process for developing objectives: More than a decade ago, a small group of administrators assembled 31 minutely detailed Student Learning Objectives. These were largely defined by the Virginia SOL's and teacher licensure competencies in each of the major subject areas. While fairly detailed, these objectives are largely unassessable. As such, a recommendation was made in the 20082009 IdLS Assessment Progress Template to revise the list of IdLS Goals and Objectives. In Spring of 2010, representatives from IdLS met with Dr. Keston Fulcher from CARS and discussed the development of new, assessable, program Goals and Objectives that fulfill the IdLS Mission. The IdLS Mission is:

- To support the university's mission to produce educated and enlightened citizens.
- To help students embrace wisdom, inspire learning, and enhance living.
- To meet Virginia teacher competencies by providing breadth and integration across the content areas of English and language arts, history, social sciences, mathematics, natural sciences, and technology.
- To work collaboratively with the Education Unit to reach its goals as articulated in its Conceptual Framework, particularly as they relate to developing a deep understanding of content.

Starting with the 2009-2010 APT the following learning objectives serve as APT Program Goals and Objectives for the IdLS program*.

Goals	Objectives	Measures and Rationale
$\begin{array}{l}\text { IdLS students } \\ \text { completing General } \\ \text { Education will } \\ \text { demonstrate } \\ \text { knowledge central to } \\ \text { the university's } \\ \text { mission, and relevant } \\ \text { to the Virginia } \\ \text { teacher } \\ \text { competencies. }\end{array}$	$\begin{array}{l}\text { IdLS students will, as a } \\ \text { group, match other JMU } \\ \text { students on General } \\ \text { Education learning } \\ \text { outcomes, specifically in } \\ \text { technology, information } \\ \text { literacy, scientific reasoning, } \\ \text { quantitative reasoning, and } \\ \text { the global and American } \\ \text { experiences. }\end{array}$	$\begin{array}{l}\text { IdLS vs non-IdLS data from Clusters 1 } \\ \text { (Tech Level I* \& ISST tests), 3 (Scientific } \\ \text { reasoning \& quantitative literacy sub- } \\ \text { scales), and 4 (Global \& American } \\ \text { Experience tests). }\end{array}$
General Education is the base upon which		
JMU aims to fulfill its mission to produce		
educated and enlightened citizens, and		
the specific content areas measured are		
teacher competencies required by the		
Virginia Department of Education.		

demonstrate

content-area

proficiency on

teacher licensure\end{array} \quad $$
\begin{array}{l}\text { For all IdLS-related } \\
\text { education programs having } \\
\text { PRAXIS II content-area } \\
\text { licensure exams (i.e., ELED, } \\
\text { IECE, and MIED), each } \\
\text { program will have at least }\end{array}
$$ \quad $$
\begin{array}{l}\text { PRAXIS II scores and pass rates, reported } \\
\text { by education program. } \\
\text { Content-area proficiency is measured by } \\
\text { PRAXIS II tests, and the 80\% pass rate on } \\
\text { PRAXIS II is a minimum pass rate required }\end{array}
$$\right\}\)
$\left.\begin{array}{|l|l|l|}\hline \text { exams. } & \begin{array}{l}\text { an 80\% pass rate on those } \\ \text { exams. }\end{array} & \begin{array}{l}\text { by NCATE for accreditation. } \\ \text { For ELED and IECE, required content-area } \\ \text { knowledge is covered by the IdLS core, } \\ \text { taken by all ELED and IECE students. For } \\ \text { MIED students, required content-area is } \\ \text { covered by the IdLS MIED core and } \\ \text { upper-level concentrations. SPED } \\ \text { students do not have a content-related } \\ \text { exam. }\end{array} \\ \hline \begin{array}{l}\text { IdLS graduates will } \\ \text { apply content-area } \\ \text { proficiency in pK-8 } \\ \text { classroom settings. }\end{array} & \begin{array}{l}\text { For current JMU MAT } \\ \text { students who completed the } \\ \text { IdLS major, more than 80\% } \\ \text { will get confirmation that } \\ \text { they appropriately applied } \\ \text { content-knowledge during } \\ \text { their student teaching } \\ \text { assignments. }\end{array} & \begin{array}{l}\text { ST-9 data (item A2, "Identifies key } \\ \text { principles and concepts of subject } \\ \text { matter") completed by student teacher } \\ \text { supervisors and JMU instructors. }\end{array} \\ \text { While the 80\% pass rate is not required } \\ \text { by any accrediting body, this content- } \\ \text { related pass rate mirrors the PRAXIS II } \\ \text { pass rate required by NCATE and is } \\ \text { therefore an appropriate minimum } \\ \text { expectation for content proficiency. }\end{array}\right\}$

Table 1. IdLS Goals, Objectives, and Measures
*As is discussed in the following text, starting with the 2010-2011 reporting year, the Tech Level I test results are no longer available and will be eliminated from the IdLS APT report.

Part II. Course/Learning Experiences

Virginia requires all of its teacher candidates to be prepared to teach the material in all of the SOL for the area of licensure, therefore the IdLS program goals and objectives must mesh with the state and federal requirements for teacher education. In 2005-06, IdLS faculty conducted the following alignments of our curriculum.

	Math/Science		Humanities/Social Science	
	Core	Concentration	Core	Concentration
VA - SOL Elementary	X		X	X
VA Licensure Standards - Elementary Education	Math Only	Math Only	X	X
VA Licensure Standards - Middle Education	X	X	X	X
SPA Standards	Science Only	Science Only		

Table 2. Alignments conducted for IdLS curriculum and accreditation/licensure standards, 2005-06.

Results of these alignment studies revealed that our core curriculum in both math/science and humanities/social sciences includes nearly all of the essential components for teacher licensure. A few specific subject areas in science have little or no coverage (weather, plants, soil, technology for example) and in language arts students are exposed to one or at most two of the 4 literature areas (American, British, World, Ethnic) but overall the core curriculum provides an excellent foundation in all 4 subject areas.

The concentration curriculum was evaluated in two ways. First, transcripts of all recent Middle Education graduates were analyzed. Since students have many choices in their concentration coursework, it was felt that direct evaluation of transcripts would give the best information of what is actually covered in students' programs. These data are found in the Appendices of the 2009-2010 report. Second, the courses themselves were analyzed for the SOL or licensure areas that the instructors cover in the course. These data are found in the Appendices of the 2009-2010 report. Transcript evaluation showed that most of the MIED humanities/social sciences students choose courses that cover less than half of the required licensure competencies. Particular weaknesses were in civics/economics and world history. World history is covered extensively in the core, but civic/economics coverage appears weak in both core and concentration. The world history requirement in the core is being modified as a result of these observations and assessment results.

Math/science MIED concentrators' transcripts were not evaluated in the same way, because the science component of this concentration has changed significantly in the past several years. This evaluation showed that students are choosing courses which fall into one or two science disciplines (as the old guidelines recommended). The new concentration guidelines are more restrictive of course selections and require a broader choice of discipline areas. Future evaluations need to be done to determine if coverage is improved. The individual alignments are found in the appendices associated with the 200506 report.

Part III. Evaluation / Assessment Methods

IdLS assessment is very complex. Evaluating students with two distinct upper division concentrations, for their mastery of knowledge, skills / attitudes in each of 4 subject areas poses a challenge. Thankfully several faculty and departments have been extraordinarily helpful in assembling data for our evaluation. CARS staff have done analyses of General Education data (Clusters 1, 3, and 4) that identify IdLS students and calculate their scores separately. The Educational Support Center in COE has provided database queries and provided student information regarding PRAXIS II test results and ST-9 results. (See Table 1 for a description of each of the instruments used (Clusters in GenED, PRAXIS II, and ST-9) and why IdLS chose to use them).

Table 3 below indicates the current status of assessments for candidates' knowledge and skills / attitudes in each of the four core subject areas.

Subject Area	Instruments Used to Evaluate Candidates'	
	Knowledge	Skills/Attitudes
Science	Cluster 3, PRAXIS II	ST-9
Math	Cluster 3, PRAXIS II	ST-9
Language Arts	Cluster 1, PRAXIS II	ST-9
Social Studies	Cluster 4, PRAXIS II	ST-9

Table 3. IdLS assessment methods grouped by subject area versus knowledge or skill / attitude

General Education Instruments

The Core component of the IdLS curriculum includes all or most of the courses required for GenEd Clusters 1, 2, 3, and 4, therefore GenEd assessment scores should be a reasonable measure of content knowledge in the IdLS core. We should be able to determine scores for IdLS students on the following General Education assessment instruments: Information Seeking Skills Test (ISST), Natural World (NAW) quantitative reasoning, Natural World scientific reasoning (NAW), Global Experience (GLEX), and American Experience (AMEX). The general descriptions of the instruments appear to be related to the objectives.

As was the case for academic years 2008-2009, 2009-2010, and 2010-2011, this years (2011-2012) data were evaluated on the performance of IdLS students for the ISST, the Natural World QR \& SR, the Global Experience, and American Experience tests. General description, data collection information, and desired results are provided for each of these general education tests below.

Information Seeking Skills Test

According to DeMars,Cameron, and Erwin (2003), "the ISST is a web-based test of 53 multiple-choice items. Four content areas (Basic Reference, Database Searching, Internet Skills, Ethics) are crossed with two process areas (Knowledge, Application). Application questions require students to apply knowledge by finding answers in catalogs and databases and by evaluating web sites. Proctors administer the test in a computer lab". (http://muse.jhu.edu/journals/journal of general education/v052/52.4demars.html)

Because first-year students must pass the test before enrolling in sophomore courses, students typically give a good effort on this test. Practically all IdLS students take this test (i.e., a census). The exact number of IdLS students who took the test is provided in the results section. Reliability analyses over the
past several years (via item response theory) reveal that the reliability for the entire test is in the low to mid .70's: a reasonable level for making group decisions in higher education. Librarians developed this test and studies by CARS have indicated that students who have had more exposure to information literacy curriculum (e.g., in class work or practice with web modules) perform better on the test. These factors provide validity evidence that the scores on this test represent information literacy. The desired outcome is that IdLS students exhibit the same degree of competence as non-IdLS students on the ISST.

Natural World Test Version 9, Scientific Reasoning and Quantitative Reasoning Scores

The NW-9 test consists of 66 items, all of which contribute to the scientific reasoning (SR) score. Twentysix of those items also contribute to quantitative reasoning and are totaled for a "QR" subscore. This test is delivered via paper and pencil and computer-based versions, both in the context of Assessment Day. Approximately one quarter of entering freshmen were randomly assigned (via the last two digits of a student's ID) to take the NAW-9 during fall 2009 Assessment Day. Many of the incoming IdLS students who took the NAW-9 in the fall of 2009 retook the test in the spring of 2012. Self report on motivation reveals that most students give a reasonable effort on the NAW-9.

The reliability of the SR and QR scores are typically in the .70 s and .60 s (Cronbach's alphas) respectively. This level of precision is respectable for higher education tests for group level decisions. The test was designed by faculty content experts and these scores relate to both course exposure and course grades in science and math. These factors contribute to validity evidence that the scores do indeed reflect quantitative and scientific reasoning.

In terms of desired results, the IdLS program would like IdLS sophomores (post-test) to score the same as other JMU students. Additionally, the IdLS program would like IdLS students to make similar gains from pre-test to post-test as non-IDLS students. These criteria for desired results are based upon previous data provided by CARS.

Global and American Experience Tests

The GLEX instrument consists of 31 multiple choice items, AMEX consists of 81 multiple choice items. The tests are administered to incoming Freshmen during the August assessment day, and to students with 45-70 credit hours during the Spring assessment day. Tests were developed by content area faculty. Scores on both tests are standardized to a mean of 500 and standard deviation of 100, set so they match the means of the norming groups for the tests (freshmen in 2000 or 2001). The reliability of the AMEX test is consistently in the range of 0.87 , the GLEX is typically in the range or 0.75 (Cronbach's alpha). These reliabilities are sufficient to make group level decisions based on aggregated scores.

PRAXIS II

All teacher licensure candidates must pass the relevant PRAXIS II exam(s) in order to be licensed. These exams are developed at ETS in consultation with teaching experts across the nation. In essence, the tests are designed to correspond directly with teaching objectives. ETS provides reliability and validity evidence for this test: http://www.ets.org/Media/Tests/PRAXIS/pdf/validity.pdf. The reliabilities of these 5 tests range from 0.88 to 0.90 nationally. Because a passing score is required for licensure, students are assumed to provide a good effort on this test.

In the past few years, score reports and institutional summaries of JMU data have been available from ETS. For the Elementary Education Content Knowledge test, scores are provided for each of the 4 subject area subscales. The four subject areas each contribute 25% of the total score. Each of the 4 Middle School subject area tests contains several discipline-related scales (see below). ETS publishes the list of content knowledge that is used to develop the test; this appears to match the IdLS learning objectives fairly well. ETS recommends that PRAXIS content be aligned with curriculum and learning outcomes before using it to make decisions about programs. The breakdown of content on the exams is as follows:

Middle School Mathematics Content Categories	Approximate Percentage of Examination
I. Arithmetic and Basic Algebra	20%
II. Geometry and Measurement	17%
III. Functions and Their Graphs	13%
IV. Data, Probability, and Statistical Concepts; Discrete	
Mathematics	17%
V. Problem-Solving Exercises	33%

Process Categories (Distributed Across Content Categories)

Mathematical Problem Solving, Mathematical Reasoning and Proof, Mathematical Connections, Mathematical Representation, Use of Technology

Middle School Language Arts Content Categories Approximate Percentage of Examination
I. Reading and Literature Study 37\%
II. Language Study 13\%
III. Composition and Rhetoric 25\%
IV. Short Essays

1. Textual Interpretation, 2. Teaching Reading/Writing 25\%

Middle School Science Content Categories Approximate Percentage of Total Score
I. Scientific Methodology, Techniques, and History 8\%
II. Basic Principles 11\%
III. Physical Sciences 18\%
IV. Life Sciences 15\%
V. Earth/Space Sciences 15\%
VI. Science, Technology, and Society 8\%
VII. Short Content Essays:

1. Physical Sciences
2. Life Sciences
3. Earth/Space Sciences
Middle School Social Studies Content Categories
I. United States History 19\%
II. World History 15\%
III. Government/Civics 14\%
IV. Geography 14\%
V. Economics 13\%
VI. Short Content Essays 25\%Approximate Percentage of Examination

Table 4. Content area coverage and exam breakdown for four Middle School Praxis II content exams. NOTE: Starting with the 2011-2012 PRAXIS Test for Middle School Social Studies, there is no longer a Content Category for Sociology /Anthropology.

ST-9

ST-9 is part of the "Assessment of Student Teaching" conducted by the COE at JMU. This form (see Appendix 1), titled "PROFILE OF STUDENT TEACHING PERFORMANCE" is filled out by the cooperating teacher and university supervisor while the IdLS student is Student Teaching. Box A2 of this form pertains to the ability of the STUDENT TEACHER to IDENTIFY KEY PRINCIPLES AND CONCEPTS OF SUBJECT MATTER. A score of:

- 3.0 means that the student teacher explicitly references AND clearly aligns appropriate content standards with planned activities and assessments,
- $\mathbf{2 . 0}$ means that the student teacher explicitly references appropriate content standards in daily plans.
- $\mathbf{1 . 0}$ means that the student teacher inaccurately and vaguely references OR does not reference appropriate content standards.

The most recent data that is available from the COE is for the 2010-2011 Academic Year, and is what will be presented here.

PART IV. Objective Accomplishments/Results

GENERAL EDUCATION

Cluster 3 NW-9 Test Results:

The Natural World instrument measures general scientific reasoning and analysis skills, independent of specific content. As such, it is a good test of students' overall science ability or skill, but not of their specific subject area knowledge. NW-9 total scores and standard deviation estimates were rather similar across both groups (IdLS and non-IdLS) students. NW-9 total scores for non-IdLS students were slightly higher than IdLS students (1.18 points higher). NW-9 total mean score standard deviation estimates for both groups were similar, indicating that, on average, there was a fair amount of variability in student NW-9 total scores within each group.

Additionally, mean QR score and standard deviation estimates for both groups were quite similar. NonIdLS student mean QR score was slightly higher than IdLS student mean QR score (. 63 points higher, on average). QR mean score standard deviation estimates for both groups were similar, indicating that, on average, there was a fair amount of variability in student QR scores within each group.

NW-9 Descriptive Statistics for Total Score												
	Spring 2009			Spring 2010			Spring 2011			Spring 2012		
	mean	SD	N									
Non-IdLS	48.3	8	1044	48.15	7.7	1002	49.79	8.19	966	49.21	7.62	943
IdLS	45.8	6.6	69	46.3	7.1	60	48.04	8.6	82	48.03	6.73	66

Table 4. Test of Mean Differences on Total NW9 Score for Spring 2012 and the three previous years.

NW-9 Descriptive Statistics for Quantitative Reasoning (QR)									
	Spring 2010		Spring 2011		Spring 2012				
	mean	SD	\mathbf{N}	mean	SD	\mathbf{N}	mean	SD	N
	18.0	3.8	1002	18.62	3.89	966	18.55	3.73	943
IdLS	16.9	3.4	60	17.84	4.2	82	17.92	3.43	66

Table 5. Test of Mean Differences on QR Score

Both the NW-9 and QR scores show improvement or no change for the period Spring 2009 to Spring 2012 for both non-IdLS and IdLS groups.

Cluster 4 Global Experience and American Experience Tests

These instruments are used to assess performance in Cluster Four of General Education. In American Experience, the non-IdLS students scored 0.07 standard deviation units higher compared to IdLS students. This small difference would be meaningless even if it were statistically significant, which it was not ($\mathrm{t}_{699}=0.38, p=.702$). In Global Experience, the non-IdLS students scored 0.15 standard deviation units higher, also a small difference. The difference between the IdLS student scores and the non-IdLS student scores was not statistically significant ($\mathrm{t}_{786}=0.81, p=.420$) (see Table 6).

	2011 Data				2012 Data			
		American Experience		Global Experience		American Experience	Global Experience	
	\mathbf{N}	Mean (sd)						
IdLS students	29	$509.0(100.2)$	60	543.3 (119.8)	44	528.1 (108.0)	42	559.3 (98.6)
Non-IdLS students	541	$538.2(109.6)$	965	$572.6(120.0)$	657	$534.8(111.6)$	746	574.3 (117.4)

Table 6. Standardized Scores on the AMEX and GLEX for IDLS students and Non-IdLS students (Standard Deviation).

On the American Experience test, the interaction between IdLS and non- IdLS and pre- /post-test was not significant ($\mathrm{F}_{1,508}=1.59, p=.208$) (see Tables 7 a and 7 b). Both groups increased their scores about the same amount (.37 standard deviation units for IdLS and .21 units for non-IdLS). On the Global Experience test, there was not a significant interaction between IdLS and non-IdLS and pre- / post- test ($F_{1,596}=0.26, p=.607$). In other words, the non-IdLS increase (. 60 standard deviation units) was not significantly different from the IdLS increase (. 68 units).

American Experience Pre-Post Comparisons								
	2011 Data	2011 Data						
	N	Pretest (sd)	Posttest (sd)	Difference	N	Pretest (sd)	Posttest (sd)	Difference
IdLS students	19	475.4 (110.3)	516.2 (111.4)	40.8	37	503.5 (113.2)	540.7 (109.0)	37.2
Non-IdLS students	253	535.1 (114.6)	563.7 (103.2)	28.6	473	525.7 (114.1)	546.5 (109.7)	20.8

Table 7a. Pre- and Post-test comparisons for American Experience (Standard Deviation).

2011 Data								
	N	Pretest (sd)	Posttest (sd)	Difference	N	Pretest (sd)	Posttest (sd)	Difference
IdLS students (N $=24)$	30	489.6 (124.9)	548.8 (131.9)	59.2	37	494.8 (93.5)	562.5 (97.3)	67.7
Non-IdLS students (N $=$ 523)	558	520.3 (118.3)	583.5 (119.6)	63.2	561	528.4 (109.4)	588.4 (109.2)	60.0

Table 7b. Pre- and Post-test comparisons for Global Experience (Standard Deviation).
Scores for IdLS students show an increase in performance for the Spring 2011 to Spring 2012 periods for both tests (American Experience and Global Experience), while scores for non-IdLS students show a slight decrease in performance on the American Experience test and a slight increase in performance on the Global Experience test (see Table 6). However, the differences between groups are not statistically significant.

Cluster 1 (Tech Level I \& ISST tests)

Tech Level I

Unlike the other GenEd tests, Tech I is reported on a number correct scale instead of a standardized scale because outside software, which only allows for number correct scoring, is used for the tests. Each test is on a 20 -point scale. Faculty set the passing score at 17 on Word (it was decreased to 16 this year), 15 on PowerPoint, and 12 on Excel. Students may repeat the test as many times as needed, and nearly all students pass by the end of the first year.

Percent Passing Tech 1 (of those who attempted the test at least once)

	2010 Data			2011 Data		
	Number who Attempted	Number who Passed	\% Passed	Number who Attempted	Number who Passed	\% Passed
Word						
IDLS	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
non-IDLS	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
PowerPoint						
IdLS	Not Available	Not	Not	Not Available	Not Available	Not Available

		Available	Available			
non-IdLS	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
Excel	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
IdLS	Not Available	Not Available	Not Available	Not Available	Not Available	Not Available
non-IdLS	Nole					

Table 8. Percent Passing Tech 1 (of those who attempted the test at least once)

As Table 8 shows, the data for both the 2012 and 2011 Tech Level 1 exam have not been made available from the vendor. As a result, in May of 2012 CARS suggested that IdLS stop using this test as a assessment point for our APT. This will be the last year that Table 8 and Table 9 will presented.

Mean Scores

	2011 Data				2012 Data			
	$1^{\text {st }}$ Attempt		Final Attempt		$1^{\text {st }}$ Attempt		Final Attempt	
	Mean	Std. Dev.						
Word								
IdLS	NA							
non-IdLS	NA							
PowerPoint								
IdLS	NA							
non-IdLS	NA							
Excel								
IdLS	NA							
non-IdLS	NA							

Table 9. Mean scores for 1st and final attempts for Tech 1 tests for IdLS others.

There are two forms of the ISST so scores are reported only on the standardized scale. The passing score was set by a faculty committee at 513 . Scores of 595 or greater receive an Advanced transcript notation. Students may repeat the test an unlimited number of times, and tutorials are available. Nearly all students pass by the end of the 1st year (those who do not probably did not bother repeating the test if they did not intend to remain at JMU).

The passing score was set by a faculty committee at 513. Scores of 595 or greater receive an Advanced transcript notation. Students may repeat the test an unlimited number of times, and tutorials are available. Nearly all students pass by the end of the 1st year (those who do not probably did not bother repeating the test if they did not intend to remain at JMU).

IdLS and non-IdLS students performed approximately the same on the ISST exam (see Table 10). 98\% of IdLS students pass and 97% of non-IdLS students pass, and 28% of IdLS students pass advance while 25% on non-IdLS students pass advance.

Percent Passing ISST (of those who attempted the test at least once)

2011 Data						2012 Data				
	N	$\begin{gathered} \text { \# } \\ \text { Pass } \end{gathered}$	$\begin{gathered} \hline \% \\ \text { Pass } \end{gathered}$	\# Advanced	$\%$ Advanced	N		\% Pass	\# Advanced	$\%$ Advanced
IdLS	856	832	97\%	212	25\%	804	785	98\%	228	28\%
Non IdLS	2743	2651	97\%	662	24\%	2788	2691	97\%	697	25\%

Table 10. Percent Passing ISST (of those who attempted the test at least once)

IdLS students attempted the test an average of 1.31 times, almost the same as the non-IdLS students with 1.37 attempts on average.

Scores from the $1^{\text {st }}$ attempt and final attempt are in the table below (see Table 11). For many students, the $1^{\text {st }}$ attempt was also the final attempt; only those who did not pass repeated the test. Thus, scores increase and the standard deviation decreases for the final attempt.

Mean Scores

	2011 Data				2012 Data			
	$1^{\text {st }}$ Attempt		Final Attempt		$\mathbf{1}^{\text {st }}$ Attempt		Final Attempt	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
IdLS	546.4	63.1	569.3	46.6	552.8	61.9	573.4	47.9
non-IdLS	545.7	63.0	568.6	47.3	546.4	62.5	569.4	47.3

Table 11. Mean scores for 1st and final attempts for Tech 1 tests for IdLS others.

IdLS students scored slightly higher. Although the difference between non-IDLS and IDLS student scores was very small (about . 10 standard deviation units), it was statistically significant due to the large sample size. [first attempt: $\mathrm{t}_{3590}=2.56, p=.0104$, final attempt: $\mathrm{t}_{3590}=2.08, p=.0378$].

PRAXIS II

Elementary Content Knowledge

The Elementary Content Knowledge exam covers basic content knowledge across all 4 subject areas in IdLS. It matches the core curriculum for the program, since this is content that all elementary teachers must teach. JMU students continue to do extremely well on the elementary education content knowledge Praxis 2 test. JMU students continue to do extremely well on the elementary education content knowledge Praxis 2 test. The median score for the current test period (9/1/2010 to $8 / 31 / 20111$) 177, 15 points higher than the national average (Table 12). This score is also higher than the pass score for VA licensure which is 143 . The lowest score among all JMU students who took the test during this year was 143 , indicating that all students who took this PRAXIS 2 test passed.

Elementary Education Praxis 2 results						
$9 / 1 / 2008$ to 8/31/2009		$9 / \mathbf{1 / 2 0 0 9}$ to 8/31/2010		$9 / 1 / 2010$ to 8/31/2011		
	ALL	JMU	ALL	JMU	ALL	JMU
N	43,271	210	42,792	203	22,833	164
High	200	199	200	196	200	198
Low	100	144	100	143	100	143
Median	163	178	163	177	162	177
Average Range	$150-176$	$170-184$	$150-175$	$170-185$	$149-175$	$168-185$

Table 12. PRAXIS II scores for all test takers and JMU cohort

ETS reports the distribution of scores for each institution relative to the national quartiles. For the most recent reporting period, Science and Mathematics have 45% and 42% of scores in the top quartile, respectively, while Language Arts and Social Studies both have 39\% of the scores in the top quartile. Equally impressive are the very low numbers of students who scored in the lowest quartiles: 2\% for Science, 4\% for Mathematics, 4\% for Social Studies and 6\% for Language Arts (Table 13).

Elementary Education Praxis 2 results								
9/1/2009 to 8/31/2010					9/1/2010 to 8/31/2011			
	Number (Percent) of Scores in each quartile				Number (Percent) of Scores in each quartile			
Subscale	$\begin{gathered} 1^{\text {st }} \\ \text { (low) } \end{gathered}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$ (high)	$\begin{gathered} 1^{\text {st }} \\ \text { (low) } \end{gathered}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$
Language Arts	$\begin{gathered} 13 \\ (6 \%) \end{gathered}$	40 (20\%)	71 (35\%)	79 (39\%)	3 (2\%)	25 (15\%)	66 (40\%)	70 (43\%)
Mathemati CS	8 (4\%)	29 (14\%)	81 (40\%)	85 (42\%)	8 (5\%)	16 (10\%)	54 (33\%)	86 (52\%)
Social Studies	8 (4\%)	42 (21\%)	74 (36\%)	79 (39\%)	8 (5\%)	24 (15\%)	51 (31\%)	81 (49\%)
Science	5 (2\%)	36 (18\%)	71 (35\%)	91 (45\%)	8 (5\%)	38 (23\%)	73 (45\%)	45 (27\%)
$N=203$					$N=164$			

Table 13. JMU quartile results for Elementary Education Praxis II.

Comparing the sum of the top two quartiles for each Subscale for the 2009-2010 data and the 20102011 data, we see that students scores improved for the areas of Mathematics, Language Arts, and Social Studies, and a slight decline in performance for the Science area.

Middle School Content Areas

The Middle School Content Area tests are a high stakes assessment of the concentration curriculum. Students must pass two of these tests, matching their two areas of concentration.

Middle School Language Arts

This exam covers content in: Reading and Literature Study (37% of test), Language Study (13% of test), Composition and Rhetoric (25% of test), and Short Essays (25% of test). Seven (7) students took the test this year, and their scores ranged from 167 to 193 (Table 14). Virginia's pass score for this test is 164 . All students taking this test eventually passed.

Middle Ed Language Arts Praxis 2 results						
$9 / 1 / 2008$ to 8/31/2009		$9 / \mathbf{1 / 2 0 0 9}$ to 8/31/2010		9/1/2010 to 8/31/2011		
	ALL	JMU	ALL	JMU	ALL	JMU
N	7,017	8	7,627	11	6961	7
High	200	191	200	195	200	193
Low	100	150	100	154	100	167
Median	173	184.5	174	183	174	176
Average Range	$161-184$	$168-188$	$161-185$	$174-186$	$162-185$	$167-182$

Table 14. JMU versus US results for Middle Ed Language Arts Praxis II.

Table 15 shows that one student scored in the top quartile in Composition and Rhetoric, one in Reading and Literature Study, and two in Short Essays. The weakest areas are Composition and Rhetoric and Reading and Literature Study, with 71% of the students scoring in the lowest 2 quartiles. However, with only 7 students taking this test, the number of students is too small to draw reliable programmatic conclusions. For instance, with little or no change in the curriculum in the last academic year Short Essays changed from being the weakest area in the previous report to the strongest area in this report. Likewise, Composition and Rhetoric changed from strongest area to weakest area between the two reports.

Middle Ed Language Arts Praxis 2 Results								
9/1/2009 to 8/31/2010					9/1/2010 to 8/31/2011			
	Number (Percent) of scores in each quartile				Number (Percent) of scores in each quartile			
	$\begin{aligned} & 1^{\text {st }} \\ & \text { (low) } \end{aligned}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{aligned} & 4^{\text {th }} \\ & \text { (high) } \end{aligned}$	$1^{\text {st }}$ (low)	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$
Reading and Literature Study	0 (0\%)	3 (27\%)	5 (45\%)	3 (27\%)	0 (0\%)	5 (71\%)	1 (14\%)	1 (14\%)

Language Study	1 (9\%)	2 (18\%)	5 (45\%)	3 (27\%)	1 (14\%)	2 (29\%)	4 (57\%)	$0(0 \%)$
Composition and Rhetoric	1 (9\%)	3 (27\%)	3 (27\%)	4 (36\%)	1 (14\%)	4 (57\%)	1 (14\%)	1 (14\%)
Short Essays	$2(18 \%)$	4 (36\%)	3 (27\%)	2 (18\%)	1 (14\%)	2 (29\%)	2 (29\%)	2 (29\%)
$N=11$	$N=7$							

Table 15. JMU quartile results for Middle School Language Arts Praxis II.
Data from Table 14 indicate that there is little difference between the performance of the 2009-10 group of 11 students and the 2010-2011 group of 7 students as Median, Low, and High scores are all approximately the same.

Middle School Social Studies

This exam covers content in US History, World History, Government and Civics, Geography, Economics, and Sociology/Anthropology. Passing score in Virginia is 160. Five students took the test in 2010-11, with scores ranging from 169 to 195 (Table 16). All students taking this test eventually passed.

In all 7 subscales, at least 50% of scores were in the highest two quartiles compared to the national average (Table 17). However, in the World History, Government/Civics, Geography, and Sociology / Anthropology, half of the scores were in the lowest two quartiles. However, with only 5 students taking this test, the number of students is too small to draw reliable programmatic wide conclusions.

Middle Ed Social Studies Praxis 2 results						
$9 / 1 / 2008$ to 8/31/2009		9/1/2009 to $8 / 31 / 2010$	$9 / 1 / 2010$ $8 / 31 / 2011$			
	ALL	JMU	ALL	JMU	ALL	JMU
N	5,166	9	5,017	10	4,485	5
High	200	190	200	191	200	195
Low	100	153	110	160	100	169
Median	165	180	165	171.5	164	173
Average Range	$153-179$	$168-184$	$152-179$	$163-177$	$152-176$	$171-183$

Table 16. JMU versus US results for Middle Ed Social Studies Praxis II.

Middle Ed Social Studies Praxis 2 Results								
9/1/2009 to 8/31/2010					9/1/2010 to 8/31/2011			
	Numbe	rcent) o	ores in ea	quartile	Numbe	(Percen qu	of score tile	in each
	$1^{\text {st }}$ (low)	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$ (high)	$\begin{aligned} & 1^{\text {st }} \\ & \text { (low) } \end{aligned}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$
US History	0 (0\%)	4 (40\%)	5 (50\%)	1 (10\%)	1 (20\%)	1 (20\%)	0 (0\%)	3 (60\%)
World History	2 (20\%)	3 (30\%)	4 (40\%)	1 (10\%)	0 (0\%)	1 (20\%)	3 (60\%)	1 (20\%)
Government / Civics	2 (20\%)	3 (30\%)	3 (30\%)	2 (20\%)	0 (0\%)	1 (20\%)	3 (60\%)	1 (20\%)
Geography	1 (10\%)	4 (40\%)	3 (30\%)	2 (20\%)	0 (0\%)	1 (20\%)	3 (60\%)	1 (20\%)
Economics	0 (0\%)	3 (30\%)	4 (40\%)	3 (30\%)	0 (0\%)	2 (40\%)	1 (20\%)	2 (40\%)
Sociology / Anthropology	0 (0\%)	5 (50\%)	1 (10\%)	4 (40\%)	NA	NA	NA	NA
Short Essays	0 (0\%)	4 (40\%)	1 (10\%)	5 (50\%)	0 (0\%)	1 (20\%)	3 (60\%)	1 (20\%)
$N=10$					$N=5$			

Table 17. JMU quartile results for Middle School Social Studies Praxis II.
Data from Table 16 indicate that there is little difference between the performance of the 2009-2010 group of 10 students and the 2010-2011 group of 5 students as Median, Low, and High scores are all approximately the same. For the current reporting period, Sociology / Anthropology scores were not available from the College of Educations ETS center (see http://www.ets.org/Media/Tests/PRAXIS/taag/0089/glance.htm for a description of this test for the current testing time frame).

Middle School Mathematics

Twenty-two students took the middle school mathematics exam during the most recent reporting period. Their scores ranged from 159 to 195 . The median score was 181.5 , which is 18.5 points higher than the national average (Table 18). The passing score for this exam in Virginia is 163. Three (3) students who took this test have yet to pass after 1 attempt.

For the 2010-11 period, the majority of scores were in the highest two quartiles compared to the national average in all 5 subscales (Table 19). Using quartile scores it is apparent that Arithmetic and Basic Algebra, and Geometry and Measurement are the two lowest performing subscales.

Middle Ed Mathematics Praxis 2 Results						
$9 / 1 / 2008$ to 8/31/2009		$9 / 1 / 2009$ to $8 / 31 / 2010$	$9 / 1 / 2010$ to 8/31/2011			
	ALL	JMU	ALL	JMU	ALL	JMU
N	11,635	27	12,359	35	11,119	22
High	200	195	200	200	200	195
Low	103	148	100	155	107	159
Median	163	172	164	178	163	181.5
Average Range	$151-177$	$165-180$	$152-177$	$171-187$	$152-177$	$172-193$

Table 18. JMU versus US results for Middle School Mathematics Praxis II.

Middle Ed Mathematics Praxis 2 Results								
9/1/2009 to 8/31/2010					9/1/2010 to 8/31/2011			
	Number (Percent) of scores in each quartile				Number (Percent) of scores in each quartile			
	$\begin{aligned} & 1^{\text {st }} \\ & \text { (low) } \end{aligned}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$\begin{aligned} & 4^{\text {th }} \\ & \text { (high) } \end{aligned}$	$\begin{gathered} 1^{\text {st }} \\ \text { (low) } \end{gathered}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$
Arithmetic and Basic Algebra	2 (6\%)	8 (23\%)	$\begin{gathered} 11 \\ (31 \%) \end{gathered}$	$\begin{gathered} 14 \\ (40 \%) \end{gathered}$	1 (5\%)	5 (23\%)	$\begin{gathered} 12 \\ (55 \%) \end{gathered}$	4 (18\%)
Geometry and Measurement	1 (3\%)	5 (14\%)	$\begin{gathered} 16 \\ (46 \%) \end{gathered}$	$\begin{gathered} 13 \\ (37 \%) \end{gathered}$	1 (5\%)	7 (32\%)	$\begin{gathered} 10 \\ (45 \%) \end{gathered}$	4 (18\%)
Functions and their graphs	1 (3\%)	2 (6\%)	$\begin{gathered} 19 \\ (54 \%) \end{gathered}$	$\begin{gathered} 13 \\ (37 \%) \end{gathered}$	0 (0\%)	5 (23\%)	9 (41\%)	8 (36\%)
Data, probability, statistical concepts, discrete math	3 (9\%)	6 (17\%)	8 (23\%)	$\begin{gathered} 18 \\ (51 \%) \end{gathered}$	0 (0\%)	5 (23\%)	4 (18\%)	$\begin{gathered} 13 \\ (59 \%) \end{gathered}$

Problem solving exercises	$2(6 \%)$	$8(23 \%)$	10 (29%)	15 (43%)	$0(0 \%)$	$3(14 \%)$	$8(36 \%)$	11 (50%)
$N=35$	$N=22$							

Table 19. JMU quartile results for Middle School Mathematics Praxis II.
Data from Table 18 indicate that there is little difference between the performance of the 2009-2010 group of 35 students and the 2010-2011 group of 22 students as Median, Low, and High scores are all approximately the same.

Middle School Science

Twelve students took this test during the year. The scores ranged from 161 to 187. The median score for JMU students taking the test was 168.5 compared to the national average of 157 (Table 20). The passing score for this test in Virginia is 162. Six (6) students who took this test have yet to pass.

In 6 of the 7 subscales, the majority of scores were in the highest two quartiles compared to the national average (Table 21). Using quartile scores it is apparent that "Science, technology, society" is the lowest performing subscale with more approximately 75% of all students scoring in the lowest 2 quartiles. Earth and Space Science is the second lowest subscale as approximately 48% of all students score in the lowest 2 quartiles. Of particular concern is that students have performed poorly on the Science, technology, society area for 3 consecutive years, so this is a meaningful result for the program.

Middle Ed Science Praxis 2 Results						
$9 / 1 / 2008$ to 8/31/2009		$9 / 1 / 2009$ to 8/31/2010		$9 / 1 / 2010$ to 8/31/2011		
	ALL	JMU	All	JMU	All	JMU
N	5,208	19	5,512	12	4,964	19
High	200	184	200	187	200	184
Low	100	145	100	161	100	152
Median	157	164	157	168.5	156	165
Average Range	$146-169$	$152-168$	$146-171$	$163-174$	$146-169$	$160-171$

Table 20. JMU versus US results for Middle School Science Praxis II.

Middle Ed Science Praxis 2 Results								
9/1/2009 to 8/31/2010					9/1/2010 to 8/31/2011			
	Number (Percent) of scores in each quartile				Number (Percent) of scores in each quartile			
	$1^{\text {st }}$ (low)	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$	$\begin{aligned} & 1^{\text {st }} \\ & \text { (low) } \end{aligned}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$\begin{gathered} 4^{\text {th }} \\ \text { (high) } \end{gathered}$
Scientific methodology, techniques, history	1 (8\%)	4 (33\%)	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	$\begin{gathered} 4 \\ (33 \%) \end{gathered}$	0 (0\%)	7 (37\%)	$\begin{gathered} 8 \\ (42 \%) \end{gathered}$	$\begin{gathered} 4 \\ (21 \%) \end{gathered}$
Basic principles	0 (0\%)	4 (33\%)	$\begin{gathered} 5 \\ (42 \%) \end{gathered}$	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	1 (5\%)	3 (16\%)	$\begin{gathered} 8 \\ (42 \%) \end{gathered}$	$\begin{gathered} 7 \\ (37 \%) \end{gathered}$
Physical sciences	0 (0\%)	0 (0\%)	$\begin{gathered} 7 \\ (58 \%) \end{gathered}$	$\begin{gathered} 5 \\ (42 \%) \end{gathered}$	$\begin{gathered} 2 \\ (11 \%) \end{gathered}$	2 (11\%)	$\begin{gathered} 6 \\ (32 \%) \end{gathered}$	$\begin{gathered} 9 \\ (47 \%) \end{gathered}$
Life sciences	2 (17\%)	2 (17\%)	$\begin{gathered} 5 \\ (42 \%) \end{gathered}$	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	$\begin{gathered} 4 \\ (21 \%) \end{gathered}$	6 (32\%)	$\begin{gathered} 6 \\ (32 \%) \end{gathered}$	$\begin{gathered} 3 \\ (16 \%) \end{gathered}$
Earth/space sciences	0 (0\%)	4 (33\%)	$\begin{gathered} 5 \\ (42 \%) \end{gathered}$	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	$\begin{gathered} 3 \\ (16 \%) \end{gathered}$	6 (32\%)	$\begin{gathered} 8 \\ (42 \%) \end{gathered}$	$\begin{gathered} 2 \\ (11 \%) \end{gathered}$
Science, technology, society	0 (0\%)	7 (58\%)	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	$\begin{gathered} 2 \\ (17 \%) \end{gathered}$	$\begin{gathered} 5 \\ (26 \%) \end{gathered}$	9 (47\%)	$\begin{gathered} 5 \\ (26 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$
Short essays	0 (0\%)	5 (42\%)	$\begin{gathered} 3 \\ (25 \%) \end{gathered}$	$\begin{gathered} 4 \\ (33 \%) \end{gathered}$	0 (0\%)	8 (42\%)	$\begin{gathered} 5 \\ (26 \%) \end{gathered}$	$\begin{gathered} 6 \\ (32 \%) \end{gathered}$
$N=19$					$N=19$			

Table 21. JMU quartile results for Middle School Science Praxis II.
Data from Table 20 indicate that there is little difference between the performance of the 2009-2010 group and the 2010-2011 group of students as Median, Low, and High scores are all approximately the same (although there is perhaps a significant difference in the Low scores).

Analysis of Middle Ed PRAXIS II Data

The following table summarizes the number of attempts that students needed to take individual PRAXIS II tests in order to pass.

	2009-2010 Data				2010-2011 Data			
Content Area	Passed on $1^{\text {st }}$ Attempt	Passed on $2^{\text {nd }}$ Attempt	Passed on $3^{\text {rd }}$ (or more) attempt	Not Passed <number of attempts>	Passed on $1^{\text {st }}$ Attempt	Passed on $2^{\text {nd }}$ Attempt	Passed on $3^{\text {rd }}$ (or more) attempt	Not Passed <number of attempts>
Mathematics	25	--	1	$1<1>$	20	1	--	$\begin{gathered} 3<1 \\ \text { each> } \end{gathered}$
Science	9	--	--	2 <2 each>	9	2	1	$4<1$ each> $2<3$ each>
English	6	1	--	$1<2>$	6	2	--	--
Social Studies	8	--	--	--	4	1	--	--

Table 22. Pass information for the Middle Ed PRAXIS II

This data shows that in the 2009-2010 cohort, 92% of the students who had taken the PRAXIS II tests had eventually passed the exams. In the current reporting period, Spring and Fall of 2011, 85\% of middle education students passed their PRAXIS II exams. Data suggest that Science continues to be the area that students have the most difficulty passing. However, a large majority of IdLS students taking PRAXIS Il exams pass on their first attempt (74% in 2008-2009, and 89% in 2009-2010, and 83% in Spring-Fall 2011).

ST-9 DATA (Item A2, "Identifies key principles and concepts of subject matter")

ST-9 is part of the "Assessment of Student Teaching" conducted by the COE at JMU. This form (see Appendix 1), titled "PROFILE OF STUDENT TEACHING PERFORMANCE" is filled out by the cooperating teacher and university supervisor while the IdLS student is Student Teaching. Box A2 of this form, pertains to the ability of the STUDENT TEACHER to IDENTIFY KEY PRINCIPLES AND CONCEPTS OF SUBJECT MATTER. A score of:

- 3.0 means that the student teacher explicitly references AND clearly aligns appropriate content standards with planned activities and assessments,
- $\mathbf{2 . 0}$ means that the student teacher explicitly references appropriate content standards in daily plans.
- $\mathbf{1 . 0}$ means that the student teacher inaccurately and vaguely references OR does not reference appropriate content standards.

For 2010-2011, a total of 208 students were evaluated with the ST-9 instrument with the following statistical results.

	ST-9 Analysis for 2008- $\mathbf{2 0 0 9}$	ST-9 Analysis for 2009-2010	ST-9 Analysis for 2010-2011
Average Score	2.93	2.9	2.94
High	3.0	3.0	3
Low	2.0	1.5	1.5
Standard Deviation	0.25	0.26	0.22
\mathbf{N}	195	345	208

Table 23. ST-9 scores for 2008-2009 to 2010-2011.
In 2008-2009 84\% of students (EIED and Middle School) scored a 3.0 on item A-2 of the ST-9, meaning that 84% of the students demonstrated the highest level of mastery of content knowledge in their classrooms. In 2009-2010, 86\% of EIED and MSED students achieved this highest level of mastery. For the Spring and Fall semesters of 2011, data is available that splits the EIED and MSED students into separate groups. For this time period, 95% EIED met highest level of mastery, while 81% of MSED also met this highest level of mastery.

RESULTS

From the data presented here for the 2010-2011 reporting period, it appears the IdLS has met each of its program goals.

- From the Cluster 1, Cluster 3, and Cluster 4 data it appears that there is no significant difference between IdLS and non-IdLS students (although no data is available for the past two years APT for the Cluster 1 Tech Level I exam). While differences do exist, the statistical differences between groups is not significant. It appears that the IdLS core is doing as good of a job as the rest of General Education program in preparing IdLS majors.
- From PRAXIS II data, it appears that each area (El Ed, Middle School Math, Middle School Science, Middle School English, and Middle School Social Studies) is performing better than the national averages. For the 2010-2011cohort, IdLS achieved a pass rate of 100% for El Ed and ~85\% for all Middle School areas. Both scores are better than the program target of 80%.
- From ST-9 data, 100\% of students achieved an adequate level of content proficiency as demonstrated in the classroom. This is again better than the target of 80%. More impressive yet, is that 95% EIED met highest level of mastery, while 81% of MSED also met this highest level of mastery as demonstrated in the classroom.

While meeting these assessment goals is meaningful, there are other recommendations that we can make based on the combined results of these assessments. The following is a list of recommendations to be disseminated to the various constituencies in IdLS.

1. Science: Elementary Education PRAXIS II test results indicate that students are being adequately prepared in sciences for this exam (Table 13). In fact for the current reporting period, Sciences are the strongest PRAXIS II area for Elementary Education. For Middle Education: Science, Technology, and Society (STS) has shown to be an area of poor performance (Table 21). This is the fourth year in a row that STS has been a low performer on PRAXIS II. However, it was hoped that a new class (ISAT 495) that was developed four years ago was going to help improve this area, but we are still seeing low performance numbers. The IdLS Math/Science/Technology committee will consider this issue in the Fall of 2012 and look for ways to improve this class. Additionally, Earth and Space Science looks to be an area needing to improve. As a result, a new astronomy course is currently being developed by Dr. Geary Albright that will be required for all Middle Ed Science Concentrators and will take the place of ASTR 301 (Searching for Life in the Universe). The new astronomy course is being developed to specifically address the Middle Ed Space and Planetary Science requirements and is anticipated to be a much better course for Middle Ed students than the ASTR 301 class.
2. Social Studies: It appears students are being well prepared for Elementary Education in Social Studies (Table 13). From Table 17 it is apparent that for the past 2 years students Middle Education students have struggled with the Geography and Sociology / Anthropology portions of the PRAXIS II exam. However, with very few test takers (10 or less) this could be a premature conclusion. However, it is recommended that these areas be examined for alignment with PRAXIS II content.
3. Language Arts: It appears students are being well prepared for Elementary Education in Language Arts (Table 13). From Table 15, it appears that there are no multiple year trends in the
data that would indicate a consistently weak part of the Middle Education program for Language Arts.
4. Mathematics: The math curriculum in IDLS remains one of the strongest content areas of the IdLS curriculum. All courses were designed from the NCTM standards, and the students all take the same core and concentration courses. Table 13 shows that consistently more than 40% of students who took the Praxis II Elementary Content test score in the top quartile nationally. From Table 15, it appears that there are no multiple year trends in the data that would indicate a consistently weak portion of the Middle Education program for Mathematics.

Part V. Dissemination

The Annual Assessment Report is provided to the program director (Fletcher Linder) and discussed with both steering committees (Math/Science/Technology and Humanities/Language Arts). The IdLS program's assessment efforts are evolving as the program evolves. Substantial progress has been made over the past several years and this is anticipated to continue until a mature assessment program has been developed. The IdLS Executive Committee and the two steering committees receive assessment information. Specific instrument results are shared with relevant area coordinators and faculty.

Results are also shared with the COE unit assessment committee and the COE Assessment Director (Amy Thelk) as well as several other joint IdLS/COE groups. We anticipate that this exchange will improve as Amy develops the assessment system and as preparation for NCATE accreditation gets underway.

PART VI. Uses of Evaluation/Assessment Results and Actions Taken

Several specific actions have been taken as a result of assessment results. Most of these are discussed in the previous sections. A few of the most significant actions are summarized here.

1. Goals, Objectives and Measures were modified in 2009-2010 based on previous years APT reports.
2. Middle Grades curriculum was, and continues to be, revised. Specifically, in response to low PRAXIS 2 scores for Middle Education Science, sub-area Earth and Space Science, a new Astronomy course is being piloted in Fall 2012. Additionally in Fall 2011, a new course entitled Oceanography for Teachers was taught in place of a non-teachers Oceanography course.
3. In response to multiple years of poor student performance on the PRAXIS II Middle Education Science, sub-area Science, technology, society, the Math/Science/Technology Steering Committee will meet with faculty teaching the ISAT 495 class which was developed specifically to cover this area of the PRAXIS II test. It is hoped that these discussions will help to improve student performance on this part of the PRAXIS II exam.
4. Ongoing improvement in IDLS 400 based on annual faculty evaluation of student projects. This is especially useful to new faculty and guarantees consistency across sections and years.
5. Increased transparency of advising and scheduling, and enhanced cooperation between COE and IDLS to facilitate scheduling and sequencing of concentration courses based on formal and informal surveys of students and faculty.
6. Chemistry, STS classes, world history courses, and middle education science requirements were all changed in response to assessment results.
7. IdLS 400 piloted a section which includes science and mathematics content in 2009-10.
8. Improved cooperation between CARS and IDLS to assure data analysis in a timely manner.
9. Based on last previous years APT's, the Mathematics/Science/Technology Coordinator starting meeting with all graduating seniors in 2009 to discuss ways to improve PRAXIS II pass rates and test scores. Based on the most recent PRAXIS II data (2009-2010), it appears that this may be having a positive influence on student performance.

APPENDIX 1. ST-9

