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Introduction
Here is a normal addition table:

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

Let’s pretend it goes on to infinity. Is it possible to delete certain rows and columns so that
each nonnegative integer appears exactly once? Yes. We can delete all the rows except the first,
or all the columns except the first, and each nonnegative integer appears exactly once.

0 1 2 3 4 5 6 7 · · · or

0
1
2
3
4
5
6
7
...

But these solutions are trivial. Is there a way to do it that leaves infinitely many rows and infinitely many
columns?

Solving the Puzzle
Let’s solve this problem one nonnegative integer at a time. We need a 0 in the final table, so we can’t delete
the first row or column. There are two 1’s in the table. One of them must be deleted, so let’s delete the 1 in
the first column. We can’t delete it by deleting the first column, so we have to delete the second row:

0 1 2 3 4 5 6 7
• • • • • • • •
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

Now there are two 2’s. We can delete the third column or the third row. Let’s choose the third column:

0 1 • 3 4 5 6 7
• • • • • • • •
2 3 • 5 6 7 8 9
3 4 • 6 7 8 9 10
4 5 • 7 8 9 10 11
5 6 • 8 9 10 11 12
6 7 • 9 10 11 12 13
7 8 • 10 11 12 13 14

We can’t delete the 3 in the third row and the second column because deleting the third row would delete
the only 2 left, and deleting the second column would delete the only 1 left. So this 3 must be in the final
table, and we have to delete the other two 3’s, which means deleting the fourth row and third column:

0 1 • • 4 5 6 7
• • • • • • • •
2 3 • • 6 7 8 9
• • • • • • • •
4 5 • • 8 9 10 11
5 6 • • 9 10 11 12
6 7 • • 10 11 12 13
7 8 • • 11 12 13 14

Notice that the numbers 0, 1, 2, and 3 are in the top-left 2-by-2 square, and 4, 5, 6, and 7 are in the square
to its right. Let’s keep that square for the final table, and delete all the other 4’s, 5’s, 6’s, and 7’s. There are
a lot of red dots now, so we’ll delete them and add in an extra row:

0 1 4 5
2 3 6 7
8 9 12 13

We see a partial 8, 9, 10, 11 square on the bottom edge. We also see a partial 12, 13, 14, 15 square. Notice
that the four 2-by-2 squares are in a 2-by-2 square in the same order (top-left, top-right, bottom-left,
bottom-right)!

Look at the final table (in the next block of the poster). The 2-by-2 squares 0-3, 4-7, 8-11, and 12-15 are
arranged in the 4-by-4 square 0-15 in the same pattern as 0, 1, 2, and 3 in the 2-by-2 square 0-3. The 4-by-4
squares 0-15, 16-31, 32-47, and 48-63 are arranged in the 8-by-8 square 0-63 in the same pattern.

Note: This is not the only addition table with infinitely many rows and columns such that every nonnegative
integer appears exactly once. We will call the property that every nonnegative integer appears exactly once
“Property 1.”

The Final Table (Top-Left 16 by 16)

0 1 4 5 16 17 20 21 64 65 68 69 80 81 84 85
2 3 6 7 18 19 22 23 66 67 70 71 82 83 86 87
8 9 12 13 24 25 28 29 72 73 76 77 88 89 92 93
10 11 14 15 26 27 30 31 74 75 78 79 90 91 94 95

32 33 36 37 48 49 52 53 96 97 100 101 112 113 116 117
34 35 38 39 50 51 54 55 98 99 102 103 114 115 118 119
40 41 44 45 56 57 60 61 104 105 108 109 120 121 124 125
42 43 46 47 58 59 62 63 106 107 110 111 122 123 126 127

128 129 132 133 144 145 148 149 192 193 196 197 208 209 212 213
130 131 134 135 146 147 150 151 194 195 198 199 210 211 214 215
136 137 140 141 152 153 156 157 200 201 204 205 216 217 220 221
138 139 142 143 154 155 158 159 202 203 206 207 218 219 222 223

160 161 164 165 176 177 180 181 224 225 228 229 240 241 244 245
162 163 166 167 178 179 182 183 226 227 230 231 242 243 246 247
168 169 172 173 184 185 188 189 232 233 236 237 248 249 252 253
170 171 174 175 186 187 190 191 234 235 238 239 250 251 254 255

Figure 1: The final table

Properties of the Table
Let an be the first row sequence of the table (so a0 = 0, a1 = 1, a2 = 4, a3 = 5, and so on), and let bn be
the first column sequence. Since the table is an addition table, the entry in row i and column j is
bi−1 + aj−1. Here are a few properties of an and bn (all the variables are nonnegative integers):

I bn = 2an
I a2n = 4an
I a2n+1 = 4an + 1

I a2n = 4n

I a2n−1 = (4n − 1)/3

I If n = 2kq + r where r < 2k then an = 4kaq + ar. (Most of the properties above this one are special
cases of this one.)

I All nonnegative integers n can be uniquely expressed as 2ai + aj for some nonnegative integers i and j.
(This proves that every number appears exactly once in the table.)

I The differences of a, ∆an, are equal to

∆an = an+1 − an =
2 · 4E2(n+1) + 1

3
,

where E2(n + 1) is the exponent of 2 in the prime factorization of n + 1.

I The preceding property implies that

an =
1

3

n + 2

n∑
k=1

4E2(k)

 .

I The sum of ak from k = 0 to 2n − 1 is

2n−1∑
k=0

ak =
8n − 2n

6
=

(
2n + 1

3

)
.

How to Calculate the First Row
How can we calculate an? One way is to use the formula given in the previous block. Here is an example:

a5 =
1

3

5 + 2

5∑
k=1

4E2(k)

 =
1

3

(
5 + 2

(
40 + 41 + 40 + 42 + 40

))
=

1

3
(5 + 2 · 23) = 17,

which is correct. But this involves calculating E2(k) for all k between 1 and n. Do we have to do this, or is
there a faster way to calculate an?
There is a faster way, and if we wrote numbers in binary instead of decimal, it would have been obvious.
Here is the sequence an written in binary:

n (binary) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 · · ·
an (binary) 0 1 100 101 10000 10001 10100 10101 1000000 1000001 1000100 1000101 · · ·

The pattern is even more obvious if we look at n in binary and an in quaternary (base 4):

n (binary) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 · · ·
an (quaternary) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 · · ·

We see that to calculate an, we can find the digits of n in binary and interpret them as quaternary digits.
Most of the properties listed in the previous block can be proved pretty easily using this fact. Also, we see
that a number is equal to an for some n if and only if it only has 0’s and 1’s in its quaternary representation.
This method of calculating an is very easy for computers to do because computers store numbers in binary.
The binary digit of n with place value 2k is

dk(n) =

⌊
n

2k

⌋
mod 2,

so we have another formula for an:

(Formula 1) an =
∑
k

4kdk(n) =
∑
k

4k
(⌊

n

2k

⌋
mod 2

)
.

(Note: Since dk(n) = 0 when k < 0 or k > blog2 nc, we are only summing a finite number of terms.)

Other Addition Tables
Are there other addition tables that have Property 1?

I The reflection about the main diagonal of any table with Property 1 also has Property 1.

I For each integer c ≥ 2, define

a
(base c)
n =

∑
k

c2k
(⌊

n

ck

⌋
mod c

)
.

The table with (i, j)th entry ca
(base c)
i + a

(base c)
j has Property 1. A lot of properties listed in the

“Properties of the Table” block can be extended to a(base c). (When c = 2 this becomes the table in

Figure 1. The number a
(base c)
n is the digits of n in base c interpreted as digits in base c2.)

I There are more than just these.

The table in Figure 1 is a two-dimensional array. What about higher-dimensional addition tables? For each
pair of integers (c, d) both at least 2, define

(Formula 2) a
(base c, dim d)
n =

∑
k

cdk
(⌊

n

ck

⌋
mod c

)
.

The d-dimensional table with n = (n1, n2, . . . , nd)-th entry

d∑
j=1

cd−ja(base c, dim d)
nj

has the d-dimensional version of Property 1. (The number a
(base c, dim d)
n is the digits of n in base c

interpreted as digits in base cd.)

The Addition Table in R2

In this block, R+ means the set of nonnegative real numbers. Let g : Rd
+→ R+. We call g a real number

addition table in d dimensions if for all x ∈ Rd
+,

g(x) =

d∑
j=1

g(Cjx),

where Cj is the matrix with (j, j)th entry 1 and all the other entries 0. We can extend Property 1 to real
number addition tables by saying g has Property 1 if g is bijective.

Can we define an if n is any real number? Yes. We can use Formula 1 from the “How to Calculate the First
Row” block. Since this is a function from R to R, we will call it f (x) instead of an. Here are some properties
of f :

I The sum in Formula 1 converges for all real numbers.

I Every nonnegative real number can be written uniquely as 2f (x) + f (y) for some x and y. Therefore,
the function g(x, y) = 2f (x) + f (y) is a real number addition table in two dimensions.

I Let q be a nonnegative integer, k be a (possibly negative) integer, and r be a nonnegative real number
less than 2k. Then, f (2kq + r) = 4kf (q) + f (r).

I The range of f has measure 0 but is uncountable. It is very similar to the Cantor set.

I The function f is continuous at a real number x > 0 if and only if 2kx 6∈ N for any integer k. (So f is
continuous at all nonterminating binary numbers, and discontinuous at all terminating binary numbers.)

I Since the set of discontinuities of f has measure 0, we can integrate f . Let n ∈ Z. The integral of f
from 0 to 2n is ∫ 2n

0
f (x) dx =

8n

6
.

I The integral of f from 0 to a rational number of the form 2t/(2v − 1) where t ∈ Z and v ∈ N is∫ 2t/(2v−1)

0
f (x) dx =

8t

8v − 1

(
1

2v − 1
+

1

6

)
.

If v = 1 then this reduces to the preceding property.

I Let n ∈ N. If we know the integral of f from 0 to n, then we can find the integral of f from 0 to a
rational number of the form 2tn/(2v − 1), where t ∈ Z and v ∈ N:∫ 2tn/(2v−1)

0
f (x) dx =

8t

8v − 1

(
1

2v − 1
+

∫ n

0
f (x) dx

)
.

If n = 1 then this reduces to the preceding property.

I The third property in this list implies that∫ 2kq+r

2kq
f (x) dx = 4krf (q) +

∫ r

0
f (x) dx,

where q is a nonnegative integer, k ∈ Z, and r is a nonnegative real number less than 2k.

I For all nonnegative integers n, ∫ n

0
f (x) dx =

n

6
+

n−1∑
i=0

f (i).

I For all x ∈ R+ and k ∈ Z,

f (x + 2k)− f (x) = 4k · 2 · 4
E2(b2−kxc+1) + 1

3
.

I Let x = n/2k be a point at which f is discontinuous, where n is odd and k ∈ Z. Then, the right limit of
f at x is f (x) and the left limit is f (x)− 2 · 4−k/3.

I We can use Formula 2 from the “Other Addition Tables” block to define f (base c, dim d)(x) to get
infinitely many real number addition tables in each dimension which have Property 1.


