
For random graphs, an interesting step would be to 

consider other random graph models other than the 

three we experimented with. It also should be possible 

to use graph scattering to synthesize new graphs from 

a given random graph model.

For real-world data, we hope to experiment on other 

datasets to see if the modified degree vector is still a 

valid choice of signal, or if this is a quirk of the 

IMDB-BINARY dataset. If it remains valid, analysis 

on how it works so well would be interesting.

For dimensionality reduction, experiment on larger 

datasets, especially those previously testing in Gao, 

Wolf, & Hirn (2019). One might also explore different 

methods of dimensionality reduction (e.g. LDA). A 

particularly interesting choice would be to experiment 

with the squeeze-fit algorithm, a method of 

dimensionality reduction designed to be used for 

classification tasks.

We implement the scattering transform on graph-

structured data to associate the data with a series of 

coefficients which will be implemented into a support 

vector machine for classification.

We first define the random walk matrix P = AD-1, 

where A is the adjacency matrix and D is the diagonal 

matrix of the degree vector. We let x be some signal 

vector encoding information about the graph.

We then define the graph wavelet transform as

The scattering transform has a multi-layered structure, 

with a non-linear activation function, σ.

We define the scattering coefficients for

We also define the second-order scattering coefficients 

for
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For both real and synthetic datasets, the scattering 

transform produces a high-dimensional representation 

of each graph. Therefore, using dimensionality 

reduction is beneficial for increasing the 

interpretability of the results. We used principal 

component analysis due to its use in the research 

conducted by Gao, Wolf, and Hirn.

Results found that for Erdős-Rényi Random 

Graphs, PCA then SVM accuracy is greater than 

standard SVM accuracy for all dimensions tested, 

with the PCA accuracy averaging at 99.5%, and the 

standard SVM accuracy averaging at 92.1%. This 

result could be due to the large portion of the variance 

retained in the data, even at very low dimensions.

For testing the IMDB-B dataset, each run uses the 

same thresholds of 99%, 90%, 80%, and 50% variance 

retained used in Gao, Wolf, and Hirn in order to better 

compare the percent variance retained at those 

thresholds. Those thresholds for the IMDB-BINARY 

dataset are 99% variance retained at 24 dimensions, 

90% variance retained at 8 dimensions, 80% variance 

retained at 4 dimensions, and 50% variance retained at 

2 dimensions. While we found similar results, the 

percent variance retained at the thresholds are lower 

than expected, with 3 out of the 4 thresholds having a 

lower percent variance retained.
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In the recent history of machine learning, deep, 

multilayered networks have been shown to 

outperform traditional models. In particular, 

Convolutional Neural Networks (CNNs) attain state 

of the art performance in many machine learning 

tasks such as image classification. The scattering 

transform is a mathematical model of these CNNs 

which allows the use of predefined wavelet filters. 

We apply the scattering transform to graph-

structured data motivated by classification tasks. The 

scattering transform produces a sequence of 

coefficients at each layer of the network which can 

be used to classify different classes of graph data. 

Specifically, we implement the scattering transform 

to classify different models of random graphs. We 

also reproduce and improve upon the results of Gao, 

Wolf, & Hirn (2019) on social network data. In 

addition, we explore the use of principal component 

analysis, applied to the scattering coefficients, as a 

dimensionality-reduction and visualization tool.
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Real-world Data

We first apply the scattering transform to classify 

three different models of random graphs: Erdős-

Rényi (ER), Watts-Strogratz (WS), and Barabási-

Albert (BA).

We next apply our network to a real-world social 

network dataset. IMDB-BINARY is a movie 

collaboration dataset of collected movie 

actor/actress and genre information. The dataset is a 

collection of ego networks of actors/actresses that 

have appeared together in any movie. The task is to 

classify whether these ego networks are labeled as 

Romance or Comedy.

We are able to reproduce and improve upon the 

results of Gao, Wolf, & Hirn (2019) by modifying 

the graph signals used. We note that choosing our 

graph signal as the degree vector, d, causes us to 

“kill off” the coefficients. That is,

Since the degree vector holds valuable 

information, we navigated this problem by instead 

using a modified version of d. In particular, we 

found using log(d) as a signal works quite 

well. With this modification we improved Gao, 

Wolf, & Hirn's (2019) results from an average 

accuracy μ of 71.2 to 72.6 over 50 runs.

Background

We find that the scattering transform 

can distinguish between the geometries of the 

random graphs. We report the mean classification 

accuracies, \mu, and the standard deviations, 

\sigma, below.
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