PATTERN AVOIDANCE IN CyYcCLIC PERMUTATIONS

Abstract

Pattern avoidance in permutations is a well-studied field of enumerative
combinatorics. We will discuss the classical version for linear permuta-
tions and then introduce a recent variant for cyclic permutations. Finally,

we will present our new results counting cyclic avoidance sets for pairs of
length 4 patterns, and give an example of how those results arise from
counting arguments.

Background

» Let S be a set with #£5 = n. A permutation of S is a sequence
T = T, M, ..., T, obtained by listing the elements of .S in some order.
We will use &, to denote the set of permutations of {1,2,...,n}. This
permutation is of length n.

= A subsequence is a (not necessarily consecutive) sequence contained
within a permutation. We say that m € G,, contains a copy of 0 € G,
if there is a subsequence of length & in 7 with the same relative order
as 0. On the other hand, we say that 7 avoids the pattern ¢ if m does
not contain a copy of o.

—Example: If 7 = 13254 contains 0 = 132 as a pattern because
the subsequence 154 has the same relative order as 0. We also say
that 7 avoids the pattern 321 since it does not contain a decreasing
subsequence of length 3.

We can draw diagrams where the heights of each point is given by
the permutation elements. A copy of 132 is bolded.

= We can also consider a permutation avoiding a set of patterns if it
does not contain a copy of any pattern in the set. We denote the set
of permutations of length n that avoid a set of patterns S as Av,,(S).
This is called the avoidance set of S.

— Example: for 7 € G,,, Av, (1) = G,, — {7}, since the only permu-
tation with the same length as 7 that avoids 7 is 7 itself.

= Counting the number of permutations avoiding a given pattern (or set
of patterns) is a common problem. We call two patterns or sets of pat-
terns Wilf equivalent if their avoidance sets have the same cardinalities.
This is denoted ™ = 7.

= A special class of Wilf equivalences are the trivial Wilf equivalences,
obtained by applying symmetries of the square to the diagram.

— Example: Applying vertical reflection to 132 gives us 231, so we
get that Av,(132) = Av,(231). For patterns in &3, applying trivial
equivalences like this yield two trivial equivalence classes. Direct
counting vyields a non-trivial equivalence between the classes. As
such, all elements of G5 are Wilf equivalent.
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Our Problem

= We may also consider cyclic permutations, where we let the end of a permutation

"wrap around” to the beginning. Accordingly, two permutations are considered
the same if one is a rotation of another. We denote cyclic permutations with
brackets.

— Example: The only two cyclic permutations of length 3 are [123] and [132],
as every other permutation is a rotation of one of these.

= We can consider pattern avoidance in the same way as before.

—Example: As a linear permutation, m = 13254 avoided 321. If we consider

7|, however, it no longer does — || contains [541] (wrapping around) as a
copy of [321].

= Since we may choose any rotation we like, we standardize to begin with 1.

= There are only six cyclic permutations of length 4; Callan [1] counted the avoid-
ance sets for these.

= Our work is on counting the avoidance sets for all pairs of length 4
patterns.

= There are 15 pairs of cyclic permutations of length 4. Applying trivial Wilf
equivalences gives us 7 trivial equivalence classes.

— Example: Applying reversal (vertical reflection) to the pair {|1234], [1423]}
gives us {[4321],|3241]}, which after rotation to begin with 1 gives us
{11432], [1324]}. This gives us one such equivalence class.

= We next use counting arguments to determine the size of these classes. A few
of the interesting results are:

—#Av,(|1234], [1243]) = 2(n — 2) for n > 2.

—#Av,,([1234, [1423]) = 1 + (", ') for all n.

—#Av,([1324, [1423]) = 2" 2 for n > 1.

We demonstrate one such counting argument next, but also note that after

counting we have 5 total equivalence classes (direct counting provides two non-
trivial Wilf equivalences)

Example Counting Argument

We will now show that #Av,,([1324], [1423]) = 2" % for n > 1 as a demonstration
of our methods. We proceed by induction. For the base case, we have just one
permutation [12], which trivially avoids [1234], [1432]. Thus #Av, = 1 = 2°72,

For the inductive step, we will assume that #Av,,_; = 2" ° and show that ev-

ery permutation in Av,,_; gives us two permutations in Av,, namely where n is
inserted before and after n — 1, and that no other permutations are possible.

This implies that we have twice as many permutations in Av,, than Av,,_;, so
#Av,, = 2(2"%) = 2772 as desired.
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Example Proof (cont.)

First, we show that every permutation in Av,_; corresponds to two
permutations in Av,, by insertion before and after the element n — 1.
Let 7] = [1...n...] bein Av,,_;. If we insert n before n — 1, then
the new permutation is of the form |7/ = [1...(n)(n — 1)...]. Since
7| was in Av,,_; before insertion, if after insertion it isn't in Av,, then
n must be involved in the offending pattern copies. If |7’| had a copy
of [1324|, then if n is involved, it must be the 4 since it is greater than
all elements. Since n — 1 and n are adjacent in 7" but not [1324],
n — 1 cannot be the 3. Then the copy replacing n with n — 1 is in |7],
contradicting our assumption that [7| was in Av,,_;. The same line of
reasoning shows that 7’ does not contain [1423], as well as that insertion
of n after n — 1 will still be in Av,,.

Example: A sample permutation in Av,,_{, and insertions before and
after n — 1. We see that both of these permutations are in Av,,.

To show that no other permutations are in Av,,, we will show that no
other insertion of n will work. This follows from the fact that removing n
from a permutation in Av,, must result in a permutation in Av,,_1, so ev-
ery permutation in Av,, must come from inserting n in some permutation
in Av,,_; Given this, assume that we have || € Av,,_1, but we insert n
before but not adjacentton—1toget |[7'|=[1...(n)...x...(n—1)]
in Av,, for some (at least one) . Then we have a copy of [1423] given
by [1(n)x(n — 1)|, so this is impossible. If we insert n after but not
adjacent to n, we have [1...(n—1)...2...(n)|, and we then have a
copy of [1324| given by [1(n — 1)z(n)|, so this is impossible too. So
n — 1 and n must be adjacent, and we have precisely two ways for this
to happen. By induction, the proof is complete.

= We have also proven results for avoidance sets for triples of cyclic
patterns.

= Other work includes examining cyclic shuffle compatibility and gener-
ating functions for cyclic permutation statistics.
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