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A Sierpiński number is an odd integer  such that   
is composite for all . A Riesel number is an odd integer   
such that  is composite for all . A covering system 
is a set of congruences  such that all integers 
satisfy at least one of the congruences. 
. 

k k ⋅ 2n + 1
n ∈ ℕ k

k ⋅ 2n − 1 n ∈ ℕ
x ≡ ai (mod ni)

Filaseta, Finch, and Kozek asked the following: for a polynomial 
 , is there a  such that  is a Sierpinski number? f(k) k f(k)

Binomial Coefficients and Sierpiński numbers

Introduction

In 2013, Finch, Harrington, and Jones proved the following 
theorem.  
Theorem. Let , where . 

(Nonlinear Sierpiński Numbers) For any positive integer   
and any  there exist infinitely many positive integers   
such that  is composite for all integers . 

(Nonlinear Riesel Numbers) For any positive integer , and  
any , there exist infinitely many positive integers  such 
that  is composite for all integers . 

f(x) = xr + x + c ∈ ℤ[x] 0 ≤ c ≤ 100
r

c ∈ C1 k
f(k) ⋅ 2n + 1 n ≥ 1

r
c ∈ C2 k
f(k) ⋅ 2n − 1 n ≥ 1

Generalizations of Sierpiński and Riesel Binomial 
Coefficients
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Generalizations using -primitive 
-coverings

(a, b)
m

Theorem 1. Let , and recall defined in the Lemma. Let  
be a nonnegative integer with base  representation ,  
where  for all , such that at least one of the  
following conditions is satisfied: 

there exists  such that ; or 
there exists  such that . 

Then there exist infinitely many positive integers  such that  is  
a Sierpiński number.

p = 641 𝒢 r
p r = ∑j

i=0 ripi

ri ∈ [0,p − 1] i ∈ [0,j]

i0 ∈ [0,j] ri0 ∈ 𝒢
i1, i2 ∈ [0,j] ri1, ri2 ∈ [1,515]

k (k
r)

Corollary. Let  be an odd positive integer. Then there exist  
infinitely many positive integers  such that  is a Sierpiński 
 number.

r
k (k

r)

For a positive integer , we call a positive integer  an -Sierpiński  
(resp. -Riesel) number if  (resp.  

),  is not a power of , and   
(resp. ) is composite for all natural numbers .

a k a
a gcd(k + 1,a − 1) = 1

gcd(k − 1,a − 1) = 1 k a k ⋅ an + 1
k ⋅ an − 1 n

Theorem 2. Let  and  be positive integers such that  is not a  
power of  and  is odd.  Further assume that there exists a positive  
integer  such that  is divisible by distinct primes  and ,  
where neither  nor  divides  for any .  Then 
 each of the following holds: 

there exist infinitely many positive integers  such that  is an 
 -Sierpiński number; 

there exist infinitely many positive integers  such that  is an 
 -Riesel number.

a r a + 1
2 r

τ a2τ − 1 p0 pτ

p0 pτ a2 ℓ̃ − 1 ℓ̃ ∈ [0,τ − 1]

k (k
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aLemma. Let , and let 

 

Then there exists a function  such that for every 

 ,  

p = 641
𝒢 = {γ ∈ [1,p − 1] : γ is odd} ∪

κ : 𝒢 → [0,p − 1]

r ∈ 𝒢 (κ(r)
r ) ≡ − 1 (mod p) .

Theorem 3. Let  be a positive integer for which there exists an 

 -primitive -covering .  Then there exist infinitely many  

positive integers  for which each of the following holds: 

there exist infinitely many positive integers  such that  

,  is not a power of , and   

has at least  distinct prime divisors for all natural numbers ; 

there exist infinitely many positive integers  such that  

,  is not a power of , and  

 has at least  distinct prime divisors for all natural  

numbers ; and 

if  is an -primitive disjoint -covering, then there exist  

infinitely many positive integers  such that  

,  is not a power  

of , 

  and  are composite, and each of  

and  has at least  distinct prime divisors for all  

natural numbers .
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The following theorem extends the corollary to -Sierpiński and   
-Riesel numbers.

a
a

Harrington extended the concept of -primitve  in  
2015 with the following definition: A covering system  

 is called an -primitive -covering if every  
integer satisfies at least  congruences of  and there exist distinct  
primes  such that for each ,  and 
 for any . It is a -primitive disjoint -covering 
if it can be partitioned into  disjoint -primitive -covering  
systems.

(2,1) m − coverings

𝒞 = {qℓ (mod mℓ)}τ
ℓ=1 (a, b) m

m 𝒞
p1, p2, …, pτ ℓ ∈ [1,τ] pℓ ∣ amℓ − bmℓ

pℓ ∤ a ℓ̃ − b ℓ̃ ℓ̃ < mℓ (a, b) m
m (a, b) 1


