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A Sierpinski number is an odd integer k such that k- 2" + 1
is composite for all n € N. A Riesel number is an odd integer k
such that k- 2" — 1 is composite for all n € N. A covering system

is a set of congruences x = a; (mod n;) such that all integers
satisty at least one of the congruences.

Filaseta, Finch, and Kozek asked the following: for a polynomial
f(k), is there a k such that f(k) is a Sierpinski number?

In 2013, Finch, Harrington, and Jones proved the tollowing
theorem.

Theorem. Let f(x) = x"+ x + ¢ € Z[x], where 0 < ¢ < 100.

O (Nonlinear Sierpinski Numbers) For any positive integer r
and any ¢ € C, there exist infinitely many positive integers k
such that f(k) - 2" 4+ 1 is composite for all integersn > 1.

O (Nonlinear Riesel Numbers) For any positive integer r, and
any ¢ € C,, there exist infinitely many positive integers k such
that f(k) - 2" — 1 is composite for all integersn > 1.

Binomial Coefficients and Sierpinski numbers

Lemma. Let p = 641, and let
G={yel[lp—-1]:7isodd} U

{2,6.8,10, 12,22, 24, 30,32, 34, 44, 46, 48, 52, 56, 66, 70, 74, 80, 84, 86, 94, 100, 102,
104, 110, 118,120, 134, 136, 140, 144, 146, 160, 162, 174, 176, 182, 184, 190, 194,
195, 200, 202, 208, 222, 224, 2306, 248, 250, 252, 260, 270, 292,294, 304, 312, 318,

334, 336, 338, 348, 366, 368, 374,402, 414, 424, 426, 454, 474, 530, 546. 552, 578 }.

Then there exists a functionk : & — [0,p — 1] such that for every

(V)
re g, =—1 (mod p).

r
Theorem 1. Let p = 641, and recall &defined in the Lemma. Let r

be a nonnegative integer with base p representation r = Z‘Z.zo r.p',
where r; € [0,p — 1] for all i € [0,j], such that at least one of the
following conditions is satisfied:

O there exists iy € [0,j] such thatr, € &, or

O there exists iy,1, € [0,j] such that ris 1y € [1.5135].

Then there exist infinitely many positive integers k such that (k) IS
a Sierpinski number. r

Corollary. Let r be an odd positive integer. Then there exist

infinitely many positive integers k such that I; is a Sierpinski
number.
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Generalizations of Sierpinski and Riesel Binomial

Coefficients

For a positive integer a, we call a positive integer k an a-Sierpinski
(resp. a-Riesel) numberit gcd(k+ 1,a — 1) = 1 (resp.
ocd(k—1l,a—1)=1),kisnotapowerotfta,andk-a"+ 1

(resp. k- a" — 1) is composite for all natural numbers n.

The following theorem extends the corollary to a-Sierpiniski and
a-Riesel numbers.

Theorem 2. Let a and r be positive integers such thata + 1 is not a
power of 2 and ris odd. Further assume that there exists a positive

integer 7 such that a® — 1 is divisible by distinct primes p, and p_,

where neither py nor p_divides a2’ — 1 for any = [0,7— 1]. Then

each of the following holds:

O there exist infinitely many positive integers k such that (];) IS an

a-Sierpinski number;

r

O there exist infinitely many positive integers k such that (k) IS an

a-Riesel number.
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Binomial coeflicients linked with Sierpinski & Riesel numbers

Generalizations using (a, b)-primitive
M-COVerings

Harrington extended the concept of (2,1)-primitve m — coverings in

2015 with the following definition: A covering system

€ = {q, (mod m,)},_, is called an (a, b)-primitive m-covering it every
integer satisfies at least m congruences of € and there exist distinct
primes py, py, ..., P, such that for each £ € [1,7], p, | a™¢ — b™¢ and

P 1 a’ — b’ for any £ < m,. It is a (a, b)-primitive disjoint m-covering
it it can be partitioned into m disjoint (a, b)-primitive 1-covering

systems.

Theorem 3. Let a be a positive integer for which there exists an

(a,1)-primitive m-covering €. Then there exist infinitely many

positive integers r for which each of the tollowing holds:

O there exist infinitely many positive integers k such that

ogcd ((f) + l.a — 1) =1 (I;) is not a power of a, and (f) -a”+ 1

has at least m distinct prime divisors for all natural numbers n;

O there exist infinitely many positive integers k such that

ogcd ((k) — l,a — 1) =1, (k) is not a power of a, and

r r

(I;) -a" — 1 has at least m distinct prime divisors tor all natural

numbers n: and
O it € is an (a,l)-primitive disjoint m-covering, then there exist
infinitely many positive integers k such that

ogcd ((f) + 1,a — 1) = gcd ((f) — 1l,a — 1) = 1, (f) IS not a power

of a,
(k> -a" + 1 and (k) -a" — 1 are composite, and each of(k> a4+ 1

r r r

and <I;) -a" — 1 has at least |m/2]| distinct prime divisors for all

natural numbers n.
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